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Abstract

We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B.
Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584–596] and Turpault
et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat
transfer equations, J. Comput. Phys. 198 (2004) 363–371] to multi-D. To that end, we consider a partial moment system with
general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons
for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years the interest in numerically tractable approximations to the radiative heat transfer equations
has drastically increased. Applications range from industrial cooling processes (e.g. glass cooling) over astro-
physics to combustion (e.g. in gas turbine combustion chambers). Since radiative heat transfer (RHT) often
plays a role in complex physical situations involving for example fluid flow and chemical reactions, one is
interested in substituting the system of integro-differential equations describing RHT by a mathematically less
complicated, yet accurate, approximate model. Examples of such approximate models are diffusion approxi-
mations [18], higher order diffusion approximations like PN and SPN equations (cf. [20,19] and references
therein), and moment models [38,1,21].

The model that we present in this paper is a further development of the one-dimensional model introduced
in [9] and developed in [41,43]. By using half moments, i.e., by averaging the radiative intensity over the direc-
tions going to the left and to the right separately, one can capture highly anisotropic physical situations. In
one-dimensional numerical experiments the half moment model has shown to be very accurate at a low com-
putational cost [9,8]. It is our purpose in this paper to extend this model to several space dimensions.
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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We consider the RHT equations in a domain D in R3:
qmcmotT �r � ðkrT Þ ¼
Z
S

Z 1

0

jðI m � BmðT ÞÞdmdX; ð1:1Þ

8X 2 S; 8m > 0 :
1

c
otIm þX � rIm ¼ r

1

4p

Z
S

I m dX� I m

� �
þ jðBmðT Þ � ImÞ. ð1:2Þ
In these equations, Im(x, t,X) denotes the radiative intensity at point x 2 D, time t, frequency m, traveling into
direction X 2 S, where S is the unit sphere in three dimensions. Furthermore, T(x,t) is the material temper-
ature. The heat conductivity is denoted by k. Although the absorption coefficient j and the scattering coeffi-
cient r generally depend on the frequency, we want to assume in the following that they are constant. How to
handle frequency-dependent coefficients was shown in a previous paper [43]. Frequency-dependent quantities
are marked with a subscript m. Here, Bm is the Planck equilibrium distribution,
BmðT Þ ¼
2hm3

c2

1

expðhm
kTÞ � 1

. ð1:3Þ
By ÆB(T)æ we denote the Planckian integrated over all frequencies and directions,
hBðT Þi ¼
Z
S

Z 1

0

BmðT ÞdmdX ¼ aT 4; ð1:4Þ
where we have used Stefan’s law. The parameter a ¼ 2p5k4

15h3c2 is Stefan’s constant.
We supplement this system with the following boundary conditions. For the material temperature we con-

sider the heat flux through the boundary due to advection,
kn � rT ¼ hBðT b � T Þ. ð1:5Þ

Here, Tb is the outside temperature and a is the hemispheric emmisivity/absorptivity. Furthermore, we pre-
scribe semi-transparent boundary conditions for the ingoing radiation,
ImðXÞ ¼ qðX0ÞImðX0Þ þ ð1� qðXÞÞBmðT bÞ. ð1:6Þ

If n denotes the outward normal vector, then X 0 = X � 2(n Æ X)n denotes the reflected direction. The reflectiv-
ity q can be computed using Snell’s and Fourier’s law.

Finally, we use suitable initial values for T and Im.

1.1. Moment models

Before we present our key ideas we briefly review the basics of the moment approach. Consider again the
transport equation (1.2) for the radiation. This equation is in fact a system of infinitely many coupled integro-
differential equations that describes the distribution Im of all photons in time, space and velocity space. On the
one hand this system is computationally very expensive and on the other hand we are not interested in the
photon distribution itself but in macroscopic quantities like the mean energy or mean flux of the radiation
field. For instance, only the integral of Im enters into the energy equation (1.1). The macroscopic quantities
are moments of the distribution function. Let
h�i :¼
Z
S

Z 1

0

� dmdX ð1:7Þ
denote the integral over all directions and frequencies. The directions are elements of the unit sphere S in
three dimensions. The energy, flux vector and pressure tensor of the radiation field are defined, respectively,
as
E :¼ hImi; F :¼ hXImi; P :¼ hðX�XÞImi. ð1:8Þ

To derive equations for the macroscopic quantities we multiply the transport equation by 1 and X and inte-
grate over all directions and frequencies. We obtain the conservation laws:
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1

c
otE þr � F ¼ jðaT 4 � EÞ; ð1:9Þ

1

c
otF þr � P ¼ �ðjþ rÞF. ð1:10Þ
We used Stefan–Boltzmann’s law to replace ÆBm(T)æ by aT4. These are four equations (the first is a scalar equation,
the second has three components) for 10 unknowns (E scalar, F 3-component vector, P symmetric 3 · 3-matrix).
Hence we have to pose an additional condition. Usually this condition is a constitutive equation for the highest
moment P, expressed in terms of the lower moments E and F. This is also referred to as closure. The simplest
approximation, the so-called P1 approximation, is obtained if we assume that the underlying distribution is lin-
early anisotropic. Thus we obtain P ¼ 1

3
E Id, where Id is the 3 · 3 unit tensor, and therefore:
1

c
otE þr � F ¼ jðaT 4 � EÞ; ð1:11Þ

1

c
otF þr

1

3
E ¼ �ðjþ rÞF. ð1:12Þ
However, this approximation suffers from serious drawbacks. First, anisotropic situations are not correctly
described. This becomes apparent most drastically for a ray of light with direction X0, where P = EX0 � X0.
This problem remains for the PN equations where it is assumed that the underlying distribution is a polyno-
mial in X. Second, boundary conditions cannot be incorporated exactly. At a boundary we usually prescribe
the ingoing flux only. Here we have to prescribe values for the full moments. These moments contain the un-
known outgoing radiation. Various approximate boundary conditions have been introduced, cf. [22–24].
Moreover, a polynomial expansion cannot capture discontinuities in the angular photon distribution. Krook
[16] remarks that especially at the boundary there is a discontinuity in the distribution between in- and out-
going particles.

In the following section we want to describe two key ideas which resolve these difficulties and have addi-
tional physically and mathematically desirable properties. The first idea is the entropy minimization principle
that will be employed to obtain the constitutive equation for P. This principle has become the main concept of
rational extended thermodynamics [27]. The second idea is to perform the integration not over all directions
but only over parts of the unit sphere. Using this technique in combination with a kinetic scheme, more accu-
rate boundary conditions can be formulated and discontinuities in the distribution can be taken care of.

1.2. Minimum entropy closure

We want to explain the entropy minimization principle and its practical application by means of our simple
moment system (1.9) and (1.10). To close the system we determine a distribution function Jm that minimizes
the radiative entropy
H �RðImÞ ¼
Z
S

Z 1

0

h�RðImÞdmdX ð1:13Þ
with
h�RðImÞ ¼
2km2

c3
ðn log n� ðnþ 1Þ logðnþ 1ÞÞ where n ¼ c2

2hm3
I m ð1:14Þ
under the constraint that it reproduces the lower order moments,
hJmi ¼ E and hXJmi ¼ F. ð1:15Þ

Some remarks on this principle might be in order. With a minus sign in front the entropy is maximized. It is
then the well-known entropy for bosons adapted to radiation fields [28,32]. Furthermore, at first sight, it is not
clear why the distribution should minimize the entropy when all that is known for non-equilibrium processes is
that there exists an entropy inequality. But it can be shown [6] that the minimization of the entropy for given
moments and the entropy inequality are equivalent. The above minimization problem can be solved explicitly
and the pressure can be written as [7]
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P ¼ 1� vðf Þ
2

Idþ 3vðf Þ � 1

2

f � f

jf j2

 !
E. ð1:16Þ
Here, f ¼ F
E is the relative flux and
vðf Þ ¼
5� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 3jf j2

q
3

ð1:17Þ
is the Eddington factor. In the literature, this Eddington factor has been derived based on many, apparently
not connected, ideas. Levermore [21] assumed that there existed a reference frame in which the distribution
was exactly isotropic and used the covariance of the radiation stress tensor. Anile et al. [1] derived it by col-
lecting physical constraints on the Eddington factor and supposing the existence of an additional conservation
law, where the conserved quantity behaves like the physical entropy near radiative equilibrium. Further var-
iable Eddington factors have been proposed, cf. [26,21] and references therein.

Moreover, there are further desirable properties of this system. The flux is limited in a natural way, i.e.,
|f | 6 1. Physically, this corresponds to the fact that information cannot travel faster than the speed of light.
Furthermore, the underlying distribution function is always positive. These two properties are not always pre-
served in many common approximations, e.g. diffusion approximations.

The moment system, closed by the entropy minimization principle, has a very important mathematical
property. The system can be transformed to a symmetric hyperbolic system [1]. For symmetric hyperbolic sys-
tems one can prove the local well-posedness (i.e., existence, uniqueness and continuous dependence) of the
Cauchy problem for smooth initial data [10].

In spite of its advantages the minimum entropy system still suffers from a major drawback. In Fig. 1 we
show a numerical test case [4,9] with two colliding beams. We consider the domain [0,1] with j = 2.5,
r = 0. The temperature inside the medium is fixed at zero. At both sides, beams with a radiative temperature
T R :¼ ðEa Þ

1=4, where a is Stefan–Boltzmann’s constant, of 1000 enter, i.e.,
Imð0Þjl>0 ¼ aT 4
R

dðl� 1Þ
2p

and Imð1Þjl<0 ¼ aT 4
R

dðlþ 1Þ
2p

.

For this problem, the exact solution can be computed. The radiative energy is given by
EðxÞ ¼ aT 4
R e�jx þ e�jð1�xÞ� �

.

Fig. 1 shows the radiative energy computed with the minimum entropy model (labeled ‘‘full moment’’) and the
new model we propose (labeled ‘‘half moment’’). The full moment model has a qualitatively wrong solution
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with two shocks. This is not surprising since this Eddington factor, as stated above, is related to radiation
which is isotropic in a certain frame [21]. This assumption is violated in the test case above. The unphysical
behavior can be remedied by combining minimum entropy with the partial moment idea described in the
following.

1.3. Partial moments

The partial moment idea is somehow intermediate between the discrete ordinates approach and moment
models. In discrete ordinates models the integral over all directions is discretized with a numerical quadrature
rule. This yields a coupled system of finitely many transport equations, each describing transport into one
direction.

When we investigated the failure of the minimum entropy system in the last example, we saw that opposite
beams cannot be handled correctly. An even simpler and more drastic example is the following. Consider a
medium without absorption and without scattering bounded by two (infinite) parallel plates with different
temperatures T1 and T2. Let x be the axis perpendicular to the plates. Then the solution to the transport equa-
tion is given by
ImðXÞ ¼
BmðT 1Þ if Xx > 0;

BmðT 2Þ if Xx < 0;

�
ð1:18Þ
where Xx denotes the x-component of the direction X. Obviously, if T1 6¼ T2, the solution is discontinuous in
X. This behavior cannot in principle be captured by any full moment method. This leads us to the following
idea.

Let A be a partition of the unit sphere, where A 2A denotes the set of the angular integration. Instead of
integrating over all directions we integrate over each A 2A separately. To that end we define the integral
h�iA :¼
Z

A

Z 1

0

� dmdX. ð1:19Þ
Again, we multiply the transport equation by 1 and X and integrate over each A 2A to obtain:
1

c
otEA þr � FA ¼ hSiA; ð1:20Þ

1

c
otFA þr � P A ¼ hXSiA. ð1:21Þ
The heat equation (1.1) can be written as
qmcmotT �r � ðkrT Þ ¼ j
X
A2A

EA � BðT Þ
 !

. ð1:22Þ
We define the corresponding partial moments by:
EA ¼ hIiA; ð1:23Þ
FA ¼ hXIiA; ð1:24Þ
P A ¼ hðX�XÞIiA. ð1:25Þ
To close this system we have to find an equation for the partial pressures PA as functions of the partial energies
EA and partial fluxes FA.

Examples for the choice of A, which are used later, are:

� For the full moment model we have A ¼ S, i.e., the integral is over the full sphere.
� For the half moment model we have A 2 fSþ;S�g. Here, Sþ ¼ fX 2S : Xx > 0g is the positive half

sphere, where the x-component of X is positive, and S� ¼ fX 2 S : Xx < 0g analogously is the negative
half sphere.
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� For the quarter moment model we have A 2 fSþþ;Sþ�;S��;S�þg. Here, Sþþ ¼ fX 2S : Xx > 0;
Xy > 0g is the quarter sphere in the first quadrant. Analogously, Sþ� ¼ fX 2S : Xx > 0;Xy < 0g, etc.
� In 3D, one could consider eight moments, for example Sþþþ ¼ fX 2 S : Xx > 0;Xy > 0;Xz > 0g, etc.

The separation between left- and rightgoing photons in 1D is clearly motivated. In more than one space
dimension, the choice is not obvious, but we can name two guidelines. First, if the separations between the
quadrants are aligned to the space grid, then a kinetic scheme for the solution to the equations becomes par-
ticularly simple. For a rectangular grid, the best choice in this sense the quarter moment model. This will be
explained in Section 3.1. Second, the quarter moment model cannot produce unphysical shocks as the full
moment model. This will be discussed in Section 3.2. In addition, the partition should be chosen depending
on the physical problem at hand. The partial moment method allows the photon distribution to be discontin-
uous between the partitions. Hence the number and direction of the partitions should be chosen according to
the expected form of the distribution. This will also be discussed in greater detail in Section 3.2.

The partial moment idea has appeared in the literature before, often under different names (like double-PN)
and mostly in connection with boundary conditions, for example recently in [4]. However, they were always
combined only with the PN closure. Schuster [34] and Schwarzschild [35] introduce two constant distributions
for left- and rightgoing photons (P0 approximation). Krook [16], based on ideas of Sykes [40], considers half
moment in one space dimension with a PN closure. Sherman [36] compares full-PN and half-PN numerically in
1D. Özisik et al. [29] derive a half moment P1 closure in spherical geometry. Further references can be found in
[25], where also an octuple P1 closure in cylindrical geometry is introduced. Similar ideas appear in related
subjects, like gas dynamics, cf. [5] and references therein.

Combining the partial moment idea with the minimum entropy closure, we will obtain a model that com-
bines the advantages of both ideas and removes individual drawbacks.

2. Partial moment entropy approximation

For the sake of completeness we recall the explicit formulas mentioned earlier. We have to find a distribu-
tion function Jm that minimizes the radiative entropy
H �RðImÞ ¼
Z
S

Z 1

0

h�RðI mÞdmdX ð2:1Þ
with
h�RðImÞ ¼
2km2

c3
ðn log n� ðnþ 1Þ logðnþ 1ÞÞ where n ¼ c2

2hm3
Im ð2:2Þ
under the constraint that it reproduces the lower order partial moments,
hJmiA ¼ EA and hXJmiA ¼ FA ð2:3Þ

for all A 2A. The Lagrangian for this constrained minimization problem is
LðIm; a; bÞ ¼ H �RðImÞ �
X
A2A

aAðhImiA � EAÞ �
X
A2A

bA � ðhXImiA � FAÞ. ð2:4Þ
The coefficients aA 2 R and bA 2 R3 are the Lagrange multipliers corresponding to the constraints. The critical
point Jm has to satisfy for all DIm
0 ¼ oImH
�
RðJmÞ½DI m� �

X
A2A

aAhDImiA �
X
A2A

bA � hXDImiA; ð2:5Þ

¼
X
A2A

Z
A

Z 1

0

ðoIm H
�
RðJmÞ � aA � bA �XÞDIm dmdX. ð2:6Þ
Hence we obtain
oImH
�
RðJmÞ � aA � bA �X ¼ 0 ð2:7Þ
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for each A 2A. Solving for Jm we obtain after an appropriate rescaling of the multipliers the explicit formula
Jm ¼
X
A2A

Jm;A :¼
X
A2A

1

exp hm
k aAð1þ bA �XÞ
� � 1A; ð2:8Þ
where 1A is the characteristic function of the fraction A of the unit sphere. Averaging over all frequencies, we
obtain according to the Stefan–Boltzmann law
J ¼
X
A2A

1

a4
Að1þ bA �XÞ

4
1A. ð2:9Þ
Here we rescaled aA again.
In the case of A ¼ fSþ;S�g, the half moments over this distribution can be computed explicitly and

moreover the half pressures can be expressed explicitly as functions of the half energies and half fluxes
[9],
P� ¼
8f 2
�

1� 6f � þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12f � � 12f 2

�
p E�Id. ð2:10Þ
For the full moment and the half moment model this explicit closure is possible only if we take the two lowest
order moments. If we were to test with X � X and to obtain an equation for the pressure P an explicit closure
would be impossible. A linearization of the minimum entropy distribution [38] ends up with a PN closure and
loses all the advantages of entropy minimization.

An additional difficulty arises if we consider quarter moments that are particularly suited for two space
dimensions. Then even the integrals over the distribution function cannot be computed explicitly. However,
the system can be closed numerically by tabulating the pressure tensor as a function of energy and flux. A fast
and simple numerical procedure to obtain these tables is developed in the following section.

2.1. Quarter moments: numerical closure

In this section, we show how to obtain the quarter moment closure in two dimensions. This means that the
distribution depends only on two space coordinates x, y and in angle it is symmetric with respect to the x–y

plane. We will divide the sphere into the four quadrants, denoted by ++, +�, �� and �+. The quarter
moments will be denoted by
Eij; F ij; P ij; ð2:11Þ

where i, j 2 {+,�}.

2.1.1. Preliminaries

Consider the entropy minimizer in the ij quarter space, where i, j 2 {+,�},
Jij ¼
1

a4
ijð1þ bij �XÞ4

. ð2:12Þ
The partial space moments are:
Eij ¼
Z

ij

1

a4
ijð1þ bij �XÞ4

dX; ð2:13Þ

F ij ¼
Z

ij
X

1

a4
ijð1þ bij �XÞ4

dX; ð2:14Þ

P ij ¼
Z

ij
ðX�XÞ 1

a4
ijð1þ bij �XÞ4

dX. ð2:15Þ
The entropy minimizer is defined for all bij that satisfy 1 + bij Æ X > 0 for all X. It is easy to show that there is a
bijection between the set of Lagrange multipliers,
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fðaij; bijÞ : aij > 0 and 1þ bij �X > 0 for all Xg ð2:16Þ

and the set of physically realizable moments,
fðEij;F ijÞ : Eij > 0 and jF ijj < Eijg. ð2:17Þ

That every multiplier gives rise to a physically realizable moment can be directly seen from the formulas
above. On the converse, that every physically realizable moment can be represented by the entropy minimizer
is a consequence of the minimization procedure.

For the numerical inversion it is important that the mapping (aij,bij) ´ (Eij,Fij) can be reduced by one
dimension. The relative flux,
f ij ¼
F ij

Eij
¼

R
ij X 1

ð1þbij�XÞ4
dXR

ij
1

ð1þbij �XÞ4
dX

; ð2:18Þ
and the Eddington tensor,
Dij ¼
P ij

Eij
¼

R
ijðX�XÞ 1

ð1þbij�XÞ4
dXR

ij
1

ð1þbij�XÞ4
dX

; ð2:19Þ
depend only on bij.
Our aim is now to construct a table of the Eddington tensor Dij as a function of the relative flux f ij. To that

end, we prescribe an admissible Fij, compute the Lagrange multiplier bij and hence obtain a value for Dij.

2.1.2. Numerical inversion

In this section we explain how to obtain numerically a table for the Eddington tensor. For the sake of read-
ability, we will drop the ij subscripts and only consider the ++ quarter space. In fact, we will only construct a
table for this quadrant. The Eddington tensors for the other quadrants are obtained by symmetry consider-
ations, which will be described at the end of the section.

We use spherical coordinates,
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cos /ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

sin /

l

2
64

3
75. ð2:20Þ
For the ++ quarter, l runs in [�1,1] and / runs in [0,p/2]. It is convenient to prescribe f and b in polar
coordinates,
f ¼
jf j cos u

jf j sin u

0

2
64

3
75 and b ¼

jbj cos b

jbj sin b

0

2
64

3
75. ð2:21Þ
The third component of the flux (and also its Lagrange multiplier) is zero since we assumed a two-dimensional
geometry. In the following, we will drop the third component, i.e., F as well as f will be 2-vectors and P will be a
2 · 2 matrix. The admissible values for the relative flux are then 0 < |f | < 1 and 0 < u < p/2. The integrals read
f ¼

R p=2

0

R 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cos /ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
p

sin /

" #
1

ð1þjbj
ffiffiffiffiffiffiffiffi
1�l2
p

cosðb�/ÞÞ4
dld/

R p=2

0

R 1

0
1

ð1þjbj
ffiffiffiffiffiffiffiffi
1�l2
p

cosðb�/ÞÞ4
dld/

ð2:22Þ
and
D ¼

R p=2

0

R 1

0

ð1� l2Þ cos2 / ð1� l2Þ sin / cos /

ð1� l2Þ sin / cos / ð1� l2Þ sin2 /

� 	
1

ð1þjbj
ffiffiffiffiffiffiffiffi
1�l2
p

cosðb�/ÞÞ4
dld/

R p=2

0

R 1

0
1

ð1þjbj
ffiffiffiffiffiffiffiffi
1�l2
p

cosðb�/ÞÞ4
dld/

. ð2:23Þ



M. Frank et al. / Journal of Computational Physics 218 (2006) 1–18 9
To obtain good starting values for the inversion we create a table of f as a function of |b|and b. Given |b| and b
we check if these values are admissible, i.e., whether 1 + b Æ X > 0 for all X. Note that this can be done ana-
lytically. After that we compute the above integrals numerically. For example, this can be done in a comfort-
able way by using standard integration routines like quad from matlab.

To create the final tables, we choose a grid for |f |, u. At first we exclude the boundaries |f | = 0,1 and
u ¼ 0; p

2
, since the integrals are not defined for these values. Then we obtain a starting approximation for

|b|, b by inverse interpolation in the above table. With this value we start a nonlinear system solving routine,
for example matlab’s fzero to obtain |b|, b. With these values we compute D. For |f | = 0,1 the Eddington
tensor D can be computed explicitly. The distribution function is respectively isotropic or a Dirac. Values for
u ¼ 0; p

2
can be approximated well by extrapolation. The result of this procedure is shown in Fig. 2, where we

show Dyy as a function of |f | and u.
Now we explain how the other quadrants can be handled by symmetry considerations. Let D++(f++) denote

the ++ Eddington tensor depending on f++. For example, we obtain the +� Eddington tensor in the following
way. Let R denote the matrix representation of the rotation by p

2
(counter-clockwise). Then
Dþ�ðf þ�Þ ¼ RTDþþðRf þ�ÞR. ð2:24Þ

The other quadrants are handled analogously. Only R has to be replaced by the matrix rotating the relative
flux into the ++ quadrant.

The natural question arises how fine we have to discretize |f | and u. We want to obtain a table that is accu-
rate enough for all physical situations not destroying the advantages of the minimum entropy approach. On
the other hand, the table should be as small as possible since it has to be evaluated in every step of the numer-
ical computations. For the numerical examples presented in Section 3 we investigated the dependence on the
size of the tables. In our experience, a discretization of (|f |,u) on a 30 · 30 grid is sufficient.

2.2. Properties of the partial moment entropy system

The partial moment entropy approximation, especially the quarter moment case which we concentrated on,
has a lot of desirable physical and mathematical properties that we want to sum up here:

� The underlying distribution function is always positive. Hence the relative flux and the speed of propaga-
tion are limited, in agreement with special relativity.
� The system is symmetriziable hyperbolic. This makes it accessible to a powerful mathematical theory guar-

anteeing well-posedness locally in time.
� Like the full moment entropy approximation [7], the system approaches the diffusive limit and correctly

represents one beam, in the sense that the Eddington factor is zero for |f | = 0 and Dyy = 1 for |f | = 1
and u = p/2, i.e., flux into the y-direction.
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Fig. 2. Component Dyy of the Eddington tensor as a function of (|f |,u).
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� The eigenvalues of the half moment and quarter moment entropy approximation have a special structure.
For the half moment case, the eigenvalues of the ‘‘+’’ direction are always positive, the eigenvalues of the
‘‘�’’ direction are always negative. This agrees well with our physical intuition of right- and leftgoing pho-
tons. The same is true for the quarter moment system in the following sense. Let us write the equations for
one quarter in the general form
otU þ oxF ðUÞ þ oyGðUÞ ¼ SðUÞ. ð2:25Þ

For the ‘‘++’’ quarter, the Jacobian matrices F 0(U) and G 0(U) have only positive eigenvalues. For the ‘‘+�’’
quarter, F 0(U) has only positive eigenvalues while G 0(U) has only negative eigenvalues, analogously for the
other quarters.
� The minimum entropy method leads to problems in the field of rarefied gas dynamics if moments of higher

order are used [13,14]. This fact is related to the unbounded velocity space. Hence it is not an issue here if
we take only angular moments. If one wants to treat also frequency-dependent coefficients, one could use
moments of the distribution in terms of frequency, cf. [37]. But then the existence of a minimum entropy
solution cannot be guaranteed.
� This property makes very simple and accurate numerical schemes possible, for example kinetic schemes or

upwind schemes. Also, an implicit discretization has a very simple structure.

When we compare our model to other existing models the question arises whether the two lowest order
moments E and F are sufficient. One reason for choosing only the lower moments is that we wanted to obtain
an accurate and yet in terms of computational cost competitive model. In two space dimensions with quarter
moments this leads to 12 variables. Direct discretizations of the transport equation usually use many direc-
tions [15] leading sometimes to over 100 variables. Taking more moments would make the model too expen-
sive. A criterion for the number of moments has been put forward by Struchtrup [38]. He determines the
number of moments by taking an incoming beam and supposing that this beam is correctly represented if
the eigenvalues of the moment system are close to the speed of light. For the PN closure he obtains N 	 30
as a sufficient condition. Due to the special form of the distribution function, in our nonlinear approximation
the propagation speed automatically approaches the speed of light for a beam. Thus, according to this crite-
rion, the two lower order moments are sufficient.

3. Numerical results

In times of ever increasing code complexity, code verification becomes much more important. Recently, the
Method of Manufactured Solutions [33] has been suggested as a tool for code verification. The direct appli-
cation of the Method of Manufactured Solutions is very difficult to use in our case, since due to the numerical
closure, the model itself is only known numerically. However, we have performed the following dynamic tests,
as put forward in [33]:

� Trend tests: We know how the solution changes if we vary absorption and scattering coefficients, initial
temperature and boundary temperature. In addition, we observed convergence of the spatial grid.
� Symmetry tests: The solution should be symmetric for symmetric data. In our case, we also rotated initial

and boundary data by 90 degrees steps. This tests symmetries between the four quarter spaces.
� Method of exact solutions: In several special cases, one can compute an exact solution to the quarter

moment entropy model. One example is the two beam case in Fig. 1. The Eddington tensor is known ana-
lytically for a beam (|f | = 1) and for equilibrium. In this way, exact solutions can be constructed.
� Comparison tests: In Section 3.2, we show comparisons with other established codes.

We consider several steady test cases. We compare the radiative energy E obtained with the following
methods:

� Transport: Solution with a discrete ordinates (SN) approximation, cf. [15]. We consider this to be the true
solution.
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� Quarter space: Solution obtained with the quarter moment entropy model.
� SP3: The SP3 approximation is a higher order diffusion approximation, cf. [20] for details.
� P1: The well-known P1 approximation.

The Rosseland approximation gives in all cases considered far less accurate results.

3.1. Numerical methods

The Transport solution has been obtained with a multilevel iteration method [2,3]. The angular discret-
ization is a C-60 discretization (with 60 directions), cf. [15]. The parabolic SP1 equations have been dis-
cretized with a standard finite difference scheme. The first order partial differential equations, P1 and the
quarter moment model, that come out from the moment method need a special treatment, especially at the
boundary. In the following we want to present a kinetic scheme for the partial moment model in two
dimensions.

We want to adopt the viewpoint of finite volume schemes. Consider a cell Zi and denote the set of all neigh-
boring cells by Ni. Let nij be the outward normal from cell Zi to cell Zj and let Kij be the edge between cell i

and j. Furthermore, denote by jZij the area of the cell Zi, cf. Fig. 3. The partial moments are constant func-
tions on each cell. Assume that we discretize some partial flux term, e.g. $ Æ FA. Averaging over the cell and
using Gauss’ theorem yields
1

jZij

Z
Zi

r � FA dx ¼ 1

jZij

Z
oZi

n � FA ds ¼ 1

jZij
X
j2Ni

Z
Kij

nij � FA ds. ð3:1Þ
The integral over the edge can be approximated by the midpoint rule,
1

jZij
X
j2Ni

Z
Kij

nij � FA ds 	 1

jZij
X
j2Ni

jKijjnij � FA;ij; ð3:2Þ
where FA,ij is some value of FA on the edge Kij.
The key idea of the kinetic scheme is to approximate this normal flux in the following way. In each cell Zi

we have, by means of the closure, a distribution function Ji. The partial flux over the cell boundary is assumed
to consist of the outgoing partial flux from the cell Zi and the incoming partial flux from the cell Zj. Thus we
get
FA;ij 	
Z

A\fnij �X<0g
XJj dXþ

Z
A\fnij �X>0g

XJi dX. ð3:3Þ
Fig. 3. Finite volume scheme.
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These integrals in general do not coincide with the partial moments themselves. A further approximation is
Fig. 4
Interm
FA;ij 	
jA \ fnij �X < 0gj

jAj FA;j þ
jA \ fnij �X > 0gj

jAj FA;i. ð3:4Þ
The factors in front of the partial fluxes are the relative overlap of the incoming/outgoing flux directions and
the partial space A. For a rectangular grid parallel to the axes, the relative overlap is either 0 or 1 and thus Eq.
(3.4) holds exactly. Thus a kinetic scheme for the quarter moment model becomes very simple, since the fluxes
over the cell boundaries are just sums of the unknowns. Boundary conditions can be implemented by placing
ghost cells at the boundary, which contain the prescribed distribution.

After discretizing in space we obtain a system of ordinary differential equations which can be solved by stan-
dard methods. All of the latter systems have eigenvalues in modulus less than the speed of light. Thus, similar
CFL conditions hold. To be valid in the diffusive limit, the kinetic schemes can be modified to become asymp-
totic preserving. For a more detailed review on kinetic schemes we refer the reader to [12,39] and references
therein. The scheme presented above is of first order. For the construction of higher order schemes, see [13,30].

3.2. Steady test cases

In this section we present some numerical examples probing different regimes.
In the first two test cases we consider the unit square D = [0,1]2 and a fixed temperature profile,

T(x,y) = 1000 + 400(x + y). We do not consider the material equation (1.1), but instead prescribe a fixed tem-
perature profile. In the following we always consider the steady solution. As the ingoing radiation at the
boundary we prescribe a Planckian at the corresponding temperature T. The results for the intermediate
regime, r = 1 and j = 1, are shown in Fig. 4. The quarter moment entropy method outperforms the diffusive
approximations. The differences become more striking in the transport regime, r = 0.1 and j = 0.01, shown in
Fig. 5. The temperature profile is anisotropic. This cannot be captured by diffusion approximations that smear
out anisotropies. Our model is capable of capturing the anisotropies and agrees with the transport solution.

In our third example, we consider the rectangular domain D = [0, 1] · [0,10] divided into the subdomains
D0 = [0.45, 0.55] · [4.5,5.5] and DnD0. Temperature and scattering coefficient are discontinuous, T = 1000 and
j = 1 in D0, T = 1800 and j = 0.1 outside D0. The result is shown in Fig. 6. Again, the quarter moment model
is the best approximation.
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In our fourth example, we do not fix the temperature and consider both the material equation and the radi-
ative transfer equation. We set qmcm = 1, k = 1 and hB = 1. The boundary temperature is set to Tb(x,y) =
1000 + 800x. This defines the boundary value for the material temperature as well as the ingoing blackbody
radiation. The results are shown in Fig. 7. Although the heat conduction adds diffusion, the quarter moment
entropy model again outperforms the diffusion approximations.
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Fig. 6. Steady radiative energy for a fixed matter temperature profile and discontinuous coefficients, T(x,y) = 1000 and j = 1 in D0,
T(x,y) = 1800 and j = 0.1 outside D0. Planckian at boundary. Scattering coefficient r = 1. Plot along y = 5.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

6

7

8

9

10

11
x 10

4

x

1/
4π

 ∫ 
I d

Ω

Transport
Quarter Space
SP3
P1

Fig. 7. Steady radiative energy for the coupled equations in [0,1]2. Boundary temperature Tb(x,y) = 1000 + 800x, Planckian at boundary.
Intermediate regime, r = 1, j = 1.

14 M. Frank et al. / Journal of Computational Physics 218 (2006) 1–18
In our fifth example, we investigate how our model represents beams. We consider the unit square [0, 1]2. The
temperature is zero, absorption is small, j = 0.01, no scattering, r = 0. At the left boundary and at the lower
boundary, two beams with spatial width 0.1 enter the domain. We prescribe the beams in the ++ direction,
Fig. 8.
and fr
Eþþ ¼ aT 4
Beam and Fþþ ¼

cos /

sin /

� 	
Eþþ ð3:5Þ
with / = 0 and / ¼ p
2
, respectively. The result is shown in Fig. 8. We have plotted the lines of constant radi-

ative energy. First the beams penetrate the medium and are correctly described by our model. When they meet
roughly in the middle of the square, both partial fluxes in the ++ quadrant add up to one flux pointing into the
diagonal direction. The two beams cannot be exactly described by the underlying distribution function. The
effect is that the beams do not penetrate each other as they should, but the energy smears out.
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Several conclusions can be drawn from this example. First, we note that this is a very extreme test case.
Most approximate models, especially diffusion and full moment models, perform worse. If the beam direction
is not exactly aligned with one of the discrete directions, even high order discrete ordinates solutions, although
maintaining the beam structure better, have some diffusion.

In contrast to the two beam case shown in Fig. 1, in which the full moment minimum entropy model pro-
duced an unphysical shock, the quarter moment minimum entropy model produces no artificial shock. The
solution is just smeared out, i.e., the solution does not become qualitatively completely wrong. This is due
to the fact that in the quarter moment model no two opposing fluxes can add up to zero. There exists no ref-
erence frame in which the distribution has to be isotropic.

The test was designed such that both beams were in the same quadrant. If one rotates the coordinate system
(or the quarters) then both beams are in different quadrants. When they meet, they correctly penetrate through
each other without interacting, because in the absence of scattering the equations for the quarter moments
decouple. The quarter moment model allows the angular distribution to be discontinuous. If for a certain
physical problem one knows in advance, in which directions the distribution has maxima or changes rapidly,
one can rotate the angular domain in a suitable way. Of course this means on the one hand that a code with a
fixed angular decomposition (e.g. quarter moments) is limited in its applicability. On the other hand, one can
construct examples of beam configurations in which the quarter moments cannot be rotated such that there is
exactly one beam in each quadrant.

The fact that the solution changes if we rotate the coordinate system (and/or the quadrants of integration)
means that the solution to the quarter moment model is not rotationally invariant. In the discrete ordinates
method this property gives rise to the ray effect. Information is just propagated along the predefined direc-
tions. Moment models on the other hand, are rotationally invariant. If the data is rotated then the solution
just rotates. Our model is in some sense intermediate between moment models and discrete ordinates.

This can be seen by the test in Fig. 9. We consider the domain [0, 1]2 with temperature T = 0, no influx at
the boundary. Inside is a small circle of radius 0.05 with temperature T = 1000. Absorption and scattering are
small, r = j = 0.1. We compare the solution obtained with the quarter moment minimum entropy model to
the result obtained with a discrete ordinates solution with 8 directions (thus the same number of equations). In
the discrete ordinates solution, the energy from the hot source is just transported into the 8 fixed directions.
This explains the bumps in Fig. 9, where we show the radiative energy along y = 0.2. The bumps are at the
points where two of the characteristic directions intersect with the line y = 0.2. The quarter moment minimum
entropy model does not have these qualitatively wrong bumps. However, the solution has some smaller fluc-
tuations. In two dimensions, our model is a hyperbolic system of order 8. However, the characteristic curves
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depend on the solution and need not be straight lines. This shows that the quarter moment minimum entropy
model has a ray effect but it is rather small.
4. Conclusions

� The combination of the minimum entropy closure and the partial moment idea created a simple and accu-
rate model that can compete also in terms of computational cost with existing models. The model is in some
sense intermediate between discrete ordinates models which split up the directions and moment models
which integrate over all directions. On the one hand it can describe anisotropies better than full moment
models or diffusion, but on the other hand it has a limited ray effect. Thus, when applying our model,
one should have in mind the types of anisotropies which are present in the problem. A large number of
beams should be treated rather by a ray-tracing method.
� The nonlinear minimum entropy closure guarantees a higher accuracy than the usual linear PN closure. The

unphysical shock in the minimum entropy system is removed.
� Numerical experiments and a simple criterion suggest that the two lowest order moments are sufficient to

describe most physical regimes.
� The model naturally has many physically and mathematically advantageous properties, e.g. flux limitation,

the correct limiting behavior in diffusive as well as free-streaming regimes, symmetric hyperbolicity and a
simple and natural eigenvalue structure.
� The quarter moment model, as it was presented in this paper, is particularly suited for rectangular geom-

etries. The kinetic scheme is particularly simple. Boundary conditions can be prescribed in a natural way.
However, the general formulation of the partial moment approach includes general geometries. If the angu-
lar partition is chosen to fit the physical problem at hand, the approximation becomes better.

5. Future work

� The gray half moment model has been generalized to frequency-dependent coefficients by using a multi-
group approach [43], see also [42] for a detailed investigation of multigroup models. It is straightforward
to generalize the partial moment entropy model to this case. Just consider the partial integrals over a part
of the sphere and a frequency interval,
h�iA;i :¼
Z

A

Z m
iþ1

2

m
i�1

2

� dmdX. ð5:1Þ
The entropy minimizer is then a sum over all A 2A and over all bands i,
Jm ¼
X

i

X
A2A

1

expðhm
k aA;ið1þ bA;i �XÞÞ

1A1i. ð5:2Þ
� The generalization to three dimensions using octuple moments is also straightforward. Also the idea of
using only half moments in multi-D should be investigated. Half moments are sufficient to remove the
unphysical shock from the minimum entropy system and the number of equations is smaller. An ‘‘adap-
tive’’ half moment model is considered in [31].
� Semi-transparent boundary conditions, which are important, e.g. in glass manufacturing, can easily be

incorporated. All we need to do is integrate Eq. (1.6) over each A 2A. The integrals have to be tabularized
again.
� Recent results [17,11] indicate that it is critical for a model or numerical scheme to preserve the linear and

quadratic infinite medium solutions to the transport equation. It was conjectured that this is a necessary
condition for a scheme to perform well in the diffusive limit. The question, whether the kinetic scheme
for the quarter moment minimum entropy model satisfies this property, has to be investigated.
� Further applications of the model are currently under investigation. The coupling to hydrodynamics will be

of special interest.
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